Resilience improving features of MPLS, IPv6 and DNSSEC

Sotiris Ioannidis
Institute of Computer Science (ICS)
Foundation for Research and Technology – Hellas (FORTH)
Crete, Greece
MPLS, IPv6 and DNSSEC

- MPLS
 - Packet relaying
- IPv6
 - Addressing
- DNSSEC
 - Name resolution security
IPv6 Basics

• Internet protocol - for packet-switched networks
• Designated successor of IPv4
• Designed to overcome shortcomings and barriers of IPv4
 – Scalability, complexity
 – Security (sort of)
 – Address exhaustion
IPv6 Key Features (1/2)

- Very large address space
 - 2^{128} possible addresses
- Mandatory support for IPsec in the stack
- Fixed size packet header
- Auto-configuration
- Jumbograms
- Option extensibility
- No fragmentation
- Routing header
IPv6 Key Features (2/2)

- **Address scopes**
 - unicast, multicast, anycast

- **Simplified packet header**
 - Easy for routers
IPv6 Helpful Features

- Large address space thwarts reconnaissance
 - Locating targets through random scanning will not be easy
- IPsec can provide the needed e2e security that we lack today
 - PKI solution is needed
- Everything addressable (no NAT)
 - Fewer statefull nodes
 - Fewer “single points of failure”
- No fragmentation inside the network
 - Remove (some) complexity from the net
IPv6 not so Helpful

• Problems with monitoring due to large AS
 – Harder to do telescopes, honeypots, malware uses target list
• Everything addressable
 – Exposes weak hosts, no more hiding behind NAT
• Tracing due to use of MAC in addresses
 – Must randomize MAC
• Transition will be tricky
 – Coexistence of IPv4 and IPv6 may lead to problems
Some challenges still remain

- Flooding attacks
 - DoS & DDoS attacks
- Application level attacks
 - SQL injection, server-side buffer overflows, etc.
- Rogue devices on a network
 - Rogue wireless access points
- Address spoofing, MiM attacks
- What fraction of actual security breaches would really be fixed with IPv6?
IPv6 Deployments

- Hard to measure, a lot is tunneled over IPv4
 - Count IPv6 prefixes in routing tables
- 6NET
 - 6NET was a three-year European IST
 - 35 partners from 16 countries
 - Built & operated a native IPv6 network
- 2008 Beijing Olympics
 - Showcase for IPv6
IPv6 Conclusion

- IPv6 shouldn’t be considered an “all-inclusive” resilience/security solution
- Main reason for changing from IPv4 to IPv6 is the larger address space, not some fundamental security features
 - Apparently operator survey also points to this
MPLS Basics

• Packets are forwarded based on a (stack of) labels with per-link scope. Labels are distributed with the help of a variety of control protocols.

• MPLS is typically used to implement:
 – L2 p2p connections (pseudo-wires) that can carry legacy traffic (ATM, Frame Relay). In these cases MPLS can be viewed as a replacement of these legacy technologies
 – Various types of VPNs (L2 and L3 VPNs). In this case MPLS implements both new functionality and replaces existing functionality in the network.
 – Force traffic to follow certain engineered paths (traffic engineering). In this case MPLS is used to implement new functionality in the network.
 – Recover fast (sub 50 msec) from link and node failures. In this case MPLS is used to implement new functionality in the network.
MPLS Analysis

• MPLS allows operators and network service providers to offer a variety of services on top of a single converged and low cost platform
 – Consolidating multiple technologies (ATM, FR) and networks into a single easier to run network.

• Using MPLS has impact on both the security and the resiliency of the network
 – Mechanisms that increase the resiliency to network failures or to sudden variations in traffic patterns and load (traffic engineering).
MPLS Helpful Features (1/3)

- Class of Service (CoS)
 - The CoS feature for MPLS enables network administrators to provide differentiated services
 - Packets are marked according to the service requested
 - CoS offers:
 - packet classification
 - congestion avoidance
 - congestion management
MPLS Helpful Features (2/3)

• Protection Features
 – Protection vs Restoration
 – Path Protection
 – Local Protection

• Protection Modes
 – +1 protection
 • Flow sent on two separate disjoint paths
 • Receiver responsible for choosing one of the two
 – 1:1 protection
 • A backup path protects a single LSP (or a portion of a single LSP)
 – N:1 protection
 • A backup path protects one link or one node or both
 • Overlapping portions of many LSPs are protected by a single backup path
 • Applicable for local protection only
 – N:M protection (M<N)
MPLS Helpful Features (3/3)

• Security by Hiding the Core (Closed Network)
 – Address Space & Routing Separation
 – Hiding of the MPLS Core Structure
 – Label Spoofing

• Having secured the internals, the attacker can only attack the ingress, egress points of the network.
MPLS Deployments

- Bell Canada
- Alcatel – Lucent
- AT&T
- MCI
- BT
- Orange
- Vodafone
- OTENET
- Many more
MPLS Conclusions

• Proven, well deployed technology
• WRT security, edges still vulnerable
• Insider attacks
DNSSEC Basics

- **DNSSEC** is a set of extensions to DNS for securing certain kinds of information.
- It is a cryptographic signing system
 - Uses public key (asymmetric) cryptography and cryptographic hashes.
- DNSSEC is not a security panacea.
 - But it does give us some security guarantees.
DNSSEC Helpful Features (1/2)

- DNSSEC enables a security–aware receiving name server to:
 - Authenticate that the data received could only have originated from the requested zone
 - Verify the integrity of the data. The data that was received at the querying name server was the data that was sent from the queried name server
 - Verify that if a negative response (NXDOMAIN) was received to a host query, that the target record does not exist (denial of existence)
- A powerful solution to DNS cache poisoning attacks
DNSSEC Helpful Features (2/2)

• Prevents (some) Man–in–the–Middle attacks
• Protects clients from forged replies that have been created by an attacker, by exploiting query prediction
• An efficient way to prevent pharming attacks
 – Where hackers try to redirect traffic to a malicious, attacker controlled, website
DNSSEC Possible Limitations (1/2)

- Denial of Service attacks
 - DNSSEC authoritative name servers would be marginally more vulnerable to DoS attacks (they send more zone records).

- Answer validation increases the resolver's work load
 - This increased workload will also increase the time it takes to get an answer back to the original DNS client
 - Increase is minor, also crypto costs are minimal

- Trust model hierarchical
 - Each zone parent is given the role of signing over every delegated child's zone key
DNSSEC Possible Limitations (2/2)

- The average size of a DNS response message increases
 - Due to the additional signature records that are attached to the responses.
- Zone file increases in size
 - The major contributors here are the NSEC and RRSIG resource records
- Key rollover at the root is really hard
 - It affects the whole hierarchical structure
- Key management is always tricky
DNSSEC Deployments

- Sweden is the first country in the world that in late 2005 announced the signing of .se ccTLD
- At this time, DNSSEC is also deployed in Brazil (.br), Czech Republic (.cz), Puerto Rico (.pr) and Bulgaria (.bg)
- Future deployments include .org, .gov zones and the root zone
DNSSEC Deployments
DNSSEC Conclusions

• If deployed and used properly it will eliminate a certain class of attacks
• Main challenge is key management
Conclusions

• All three technologies have useful features that could affect the resiliency of the network
• However, resiliency is about more than just cobbling together technologies
• It is important to understand what each technology buys us
• Report to ENISA mid-December